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Abstract

The single-period problem (SPP), also known as the newsboy or news-vendor problem, is to ®nd the order
quantity which maximizes the expected pro®t in a single period probabilistic demand framework. Interest in the SPP

remains unabated and many extensions to it have been proposed in the last decade. These extensions include dealing
with di�erent objectives and utility functions, di�erent supplier pricing policies, di�erent news-vendor pricing
policies and discounting structures, di�erent states of information about demand, constrained multi-products,
multiple-products with substitution, random yields, and multi-location models. This paper builds a taxonomy of the

SPP literature and delineates the contribution of the di�erent SPP extensions. This paper also suggests some future
directions for research. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The classical single-period problem (SPP) is to ®nd a
product's order quantity that maximizes the expected
pro®t under probabilistic demand. The SPP model

assumes that if any inventory remains at the end of the
period, a discount is used to sell it or it is disposed of
[1]. If the order quantity is smaller than the realized
demand, the news-vendor, hereafter NV, forgoes some

pro®t. The SPP is re¯ective of many real life situations
and is often used to aid decision making in the fashion
and sporting industries, both at the manufacturing and

retail levels [2]. The SPP can also be used in managing

capacity and evaluating advanced booking of orders in
service industries such as airlines and hotels [3].

Interest in the SPP has increased in the last decade
with over 40 papers published since 1988. In this paper
we review the literature on the SPP. The SPP literature

is very large and complete coverage is beyond the scope
of a single paper. A partial review of the SPP literature
has been recently conducted in a textbook by Silver et
al. [4]. Because of the depth of the SPP literature, many

of the papers we review here were omitted in that review.
To avoid redundancy we concentrate our e�orts on
papers that received little or no treatment in Silver et

al.'s book. In Section 2 we introduce the SPP. In Section
3 we develop a taxonomy of SPP extensions and place
the reviewed models into the classes of the taxonomy. In

Section 4 we provide a discussion of the models. We
close with some concluding remarks and suggestions for
future research in Section 5.
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2. The classical single-period problem

Researchers have followed two approaches to sol-
ving the SPP. In the ®rst approach, the expected costs
of overestimating and underestimating demand are

minimized. In the second approach, the expected pro®t
is maximized. Both approaches yield the same results.
We use the second approach in stating the SPP. De®ne

the following notation:

x quantity demanded, a random variable.

f(x ) the probability density function of x.
F(x ) the cumulative distribution function of x.
P selling price per unit.
C cost per unit.

V salvage value per unit.
S shortage penalty cost per unit.
Co CÿV, unit overage cost.

Cu PÿC+S, unit underage cost.
Q order quantity, a decision variable.

The pro®t per period is

p �
� �Pÿ C � Qÿ S�xÿQ�, if xrQ
Px� V �Qÿ x� ÿ CQ, if x<Q:

�1�

Simplifying and taking the expected value of p gives

the following expected pro®t

E�p� � �P� Sÿ C �
�1
Q

Qf �x� dx

ÿ S

�1
Q

xf �x� dx� �Pÿ V �
�Q
0

xf �x� dx

ÿ �Cÿ V �
�Q
0

Qf �x� dx

�2�

Let the superscript � denote optimality. Using

Leibniz's rule to obtain the ®rst and second derivatives
shows that E(p ) is concave. The su�cient optimality
condition is the well known fractile formula:

F�Q�� � P� Sÿ C

P� Sÿ V
�3�

Identical results can be obtained by minimizing the
expected underage and overage costs. Many authors

describe the overage cost (Co) as a cost of holding
inventory which is charged to the ending inventory.

3. Extensions of the classical single-period model

The SPP has wide applicability especially in service
industries which dominates the US economy. As pro-
duct life cycles continue their downward trend, the im-

portance of the SPP will grow. It is not surprising that
many SPP extensions have been suggested with many

of them appearing in the last ®ve years. Extensions to
the SPP can be classi®ed into 11 categories:

1. Extensions to di�erent objectives and utility func-

tions.
2. Extensions to di�erent supplier pricing policies.
3. Extensions to di�erent news-vendor pricing policies

and discounting structures.
4. Extensions to random yields.
5. Extensions to di�erent states of information about

demand.
6. Extensions to constrained multi-product.
7. Extensions to multi-product with substitution.

8. Extensions to multi-echelon systems.
9. Extensions to multi-location models.
10. Extensions to models with more than one period

to prepare for the selling season.

11. Other extensions.

It should be noted that a paper may fall into more
than one of the 11 categories shown above. In that

case, the paper is placed in the category of its domi-
nant contribution.

3.1. Extensions to di�erent objectives and utility
functions

Researchers observed that maximizing E(p ) may not
re¯ect reality. Actually, maximizing the probability of
achieving a target pro®t was empirically found to be
more consistent with the actions of many managers [5].

Subsequently, researchers proposed extensions to the
SPP in which the goal is to maximize the probability
of achieving a target pro®t [6±14]. Other authors used

di�erent e�ectiveness criterion, risk tolerance and uti-
lity functions [15±21].
Kabak and Schi� [7] solved the SPP under the `satis-

®cing' objective of maximizing the probability of
achieving a target pro®t of B, denoted PB. Kabak and
Schi� derived the necessary condition for Q � and pro-

vided a closed-form solution for exponentially distribu-
ted demand.
Work on a variation of the SPP was also being car-

ried out in the accounting literature under the cost±

volume±pro®t (C±V±P ) analysis. The C±V±P states:

Total Profit � Sales Volume� �Unit Selling Price

ÿ Unit Variable Cost� ÿ Fixed Cost:
�4�

Shih [14] observed that a de®ciency in the stochastic
C±V±P is that even though demand is treated as a ran-

dom variable, the e�ects of any unsold units on pro®t
was not taken into account. Shih considered the e�ects
of over production and derived a general probability
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distribution of p, its expected value, and its variance as

a function of Q. For normally distributed demand,
Shih derived the probability distribution, the mean and
variance of p. Also, Shih derived an expression for Q

which maximizes PB. Finley and Liao [22] claimed that
Shih's analysis may be erroneous and proposed an
analysis which ®xes the error. Lau and Lau [23] pro-

vided simpler formulas for computing the mean and
variance of p and the order quantity which maximizes

PB.
Ismail and Louderback [6] also used the C±V±P

framework and incorporated a per unit shortage cost.

Ismail and Louderback showed that under shortage
penalties, pro®ts will not necessarily conform to any

well-de®ned distribution. Ismail and Louderback de-
rived the necessary condition for Q to maximize E(p ),
which is the classical result in Eq. (3). Ismail and

Louderback showed that for normally distributed
demand, the distribution of pro®t can be far from the
normal distribution and is not even symmetrical.

Under these conditions, the mean-variance method for
evaluating risk is inappropriate. Therefore, Ismail and

Louderback suggested a new objective to treat the
risk-return tradeo�, which is maximizing PB as pro-
posed by Kabak and Schi� [7]. Ismail and Louderback

then provided an iterative procedure for determining
Q �. Ismail and Louderback also used the objective of
maximizing PB, given a target level of the probability

of their being achieved and developed an iterative pro-
cedure for ®nding Q �.
Lau [8] revisited Ismail and Louderback's [6] model

and provided convenient procedures for computing
E(p ) and PB for normal, Beta, and Gamma distributed

demand. Lau also developed a simple and exact ana-
lytical solution for Q � which maximizes PB.

Norland [12] identi®ed maximizing PB as the aspira-
tion criterion and maximizing E(p ), given a target level
of probability of their being achieved, as the fractile

criterion as they are known in the literature. Like Lau
[8], Norland derived an analytical expression for Q �

for the aspiration criterion under normal demand. He

also improved Ismail and Louderback's procedure for
identifying Q � for the fractile criterion by exploiting

the duality between the aspiration and fractile criteria.
For a shortage penalty cost of S= 0, Norland
obtained analytic expressions for Q � that are valid for

any demand distribution for both aspiration and frac-
tile criteria.
Lau [9] provided more detailed analysis under the

objective of maximizing PB and added the objective of
maximizing the expected utility. For maximizing PB,

Lau addressed two cases: a shortage cost of S= 0 and
S>0. For S= 0, Q � is independent of the demand
distribution and is given by Q �=B/(PÿC ). For S>0,

Q � depends on the demand distribution. Lau provided
®rst order conditions and obtained closed-form ex-

pressions for Q � under normal and Schmeiser±Deutsch

demand distributions. Numerical methods will have to
be used for the Beta, Gamma, and Weibull distri-
butions. Lau then considered the mean-standard devi-

ation of pro®t tradeo� using u(p )=E(p )ÿks(p ), where
u(p ) is the utility of pro®t, s(p ) is its standard devi-
ation and k's magnitude re¯ects an NV's degree of risk

aversion. Q � has to be numerically evaluated. Lau also
maximized the von Neumann±Morgenstern's expected

utility of the NV resulting in a Q � which has to be
obtained numerically. Sankarasubramanian and
Kumaraswamy [13] also maximized PB.

Sankarasubramanian and Kumaraswamy provided
closed-form solutions for Q � for exponential and uni-
form demand distributions. Sankarasubramanian and

Kumaraswamy also solved the case in which the com-
modity sold is a luxury item and demand is pro-

portional to income.
Lau and Lau [10] revisited the SPP under the objec-

tive of maximizing PB for the two-product case. Lau

and Lau considered S= 0 and S>0 separately
because the latter is more complex. Lau and Lau ident-

i®ed three approaches to estimating PB and Qi
�, i = 1,

2: (1) simulate the problem, (2) develop an expression
for PB and ®nd Qi

�, i= 1, 2 using a `hill-climbing' pro-

cedure and (3) analytically solve the ®rst order con-
ditions. Approach 2 was found to be the only practical
one. Lau and Lau provided numerical solution to a

two-product SPP with uniform and normal demands
and provided some insights into management behavior.

Lau and Lau then derived general expressions for PB

and closed-form expressions for it under uniform
demand distributions. Lau and Lau derived Qi

�, i= 1,

2 for two identical products. Lau and Lau found some
counter-intuitive results. For example, if a ®rm has
two single-product divisions and each division will

receive a bonus for achieving a certain pro®t, it is ben-
e®cial for the divisions to cooperate if the targets are

lax and pro®t margins are high, but not if the targets
are high and margins are low.
Driven by the desire to explain some of the results

of Lau and Lau [10], Li et al. [11] provided analytical
results for the two-product SPP with the objective of
maximizing PB and independent exponential demand

distributions. Li et al. developed a procedure for deter-
mining Qi

�, i= 1, 2, veri®ed their results using simu-

lation and were also better able to explain some of the
earlier interesting results of Lau and Lau [10].
Atkinson [16] analyzed the e�ects of incentives in

the SPP. In this model, the owner hires a manager
because by virtue of specialization the manager can

make better decisions. Atkinson analyzed the e�ects of
di�erent incentive systems on the decision of the man-
ager and the income of the owner and manager.

Atkinson analyzed the e�ect of using a standard-set-
ting mechanism in the reward structure resulting in the
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manager's monetary return being:

Managers Return �Wage� k

� �Profit due to manager 0s decision

ÿ Profit due to standard quantity�,
�5�

where k is the manager's share of di�erential return
and the standard quantity is the quantity set by the

owner based on historical data. When Eq. (5) is not
used, Atkinson showed that a risk-averse manager will
order a quantity smaller than a risk-neutral NV and
that Eq. (5) can be used to mitigate the manager's risk.

If the manager deviates from the standard set by the
owner, it is because the manager's assessment of
demand di�ers from the owner. Atkinson also showed

that under certain conditions and using the standard-
setting mechanism, if the owner delegates the choice to
the manager, then the owner's position is usually

improved. Atkinson identi®ed the manipulation of in-
ternal prices of resources transferred within the organ-
ization as means of changing the manager's behavior,
but cautioned that this scheme is unpredictable and

may be cost-ine�ective.
Thakkar et al. [20] argued that the maximizing E(p )

or PB criteria do not consider the investment that must

be made to attain that pro®t and used return on
investment (ROI) as a criteria. Thakkar et al. solved
the SPP under two objectives: (a) maximizing E(ROI)

and (b) maximizing the probability of achieving a tar-
get ROI, PROI. Using incremental analysis to maximize
E(ROI), Thakkar et al. showed there is a unique Q �

and derived the necessary optimality condition.
Thakkar et al. simpli®ed the necessary condition for
the normal distribution to an equation that can be
manually solved. For maximizing PROI, Thakkar et al.

showed that a simple iterative procedure can be used
to solve the discrete demand case and a search pro-
cedure can be used for continuous demand and

obtained a closed-form solution for normally distribu-
ted demand.
Magee [19] and later Anvari [15] employed the capi-

tal-asset pricing model (CAPM) for the SPP. Magee
[19] suggested that the true measure of risk for the NV
is not the variance of pro®t but rather the covariance
of pro®t with the return on a market portfolio of secu-

rities. Consequently, Magee used the CAPM frame-
work to solve the SPP. Anvari [15] also provided an
argument on how risk will e�ect Q �. Similar to

Magee's model, this model captures the notion that
rational individuals will hold multiple-asset portfolios
and thus will be concerned with the covariance risk.

Anvari derived the optimality condition and developed
an algorithm for ®nding Q �. Thorstenson [21] claimed
that Anvari's assumption that the total capital to be

invested by the ®rm is ®xed leads to a case of capital
rationing which is not consistent with the perfect capi-

tal-market assumption of the CAPM. Chung [17] sim-
pli®ed Anvari's optimality conditions and provided a
simple method for computing Q �.
Eeckhoudt et al. [18] examined various comparative

statics for the risk-averse NV. Eeckhoudt et al. con-
sidered the e�ects of two types of increase in risk on

Q �: (a) the addition of an independent risk to the
NV's background wealth and (b) an increase in the ris-
kiness of newspaper demand. Eeckhoudt et al. assumed

the NV's preference functional over ®nal wealth distri-
butions is of the expected-utility type, with u(.) denot-
ing the utility of wealth. Eeckhoudt et al. also assumed
that the NV is weakly risk-averse (i.e. either risk-averse

or risk-neutral). Thus u is increasing and concave.
Eeckhoudt et al. conclusions included: (1) the risk-
averse NV orders fewer newspapers than the risk-neu-

tral NV, (2) if the NV's preferences exhibit the com-
monly assumed property of decreasing absolute risk
aversion, then wealthier NVs will order more newspa-

pers, (3) Q � will increase if the salvage value of the
newspaper increases and (4) Q � will decrease if the
cost of the newspaper increases. Eeckhoudt et al. pro-

vided detailed analysis of the qualitative e�ects of
changes in demand risk on Q �.

3.2. Extensions to di�erent supplier pricing policies

The determination of Q � when suppliers o�er quan-
tity discounts has been subject of many SPP extensions

[24±28]. Jucker and Rosenblatt [24] considered three
types of quantity discounts:
1. All-units quantity discounts. The supplier has price

schedule with price breaks at quantities:

0 � q0<q1<q2< � � �<qj< � � �<qm � 1

For order quantity Q such that qj < Q < qj + 1,
the cost per unit is Cj and

C0>C1>C2>� � �>Cj>� � �>Cm. In other words, the
discount applies to all units purchased.

2. Incremental quantity discounts. The discount
applies only to the additional units after the break-

point.
3. Carload-lot discounts in which a ¯at rate of t is

charged for each unit shipped, determined by the

weight, w, of the unit up to some fraction a of a
car's weight capacity L. Any quantity such that
aL R wQ R L is considered as a `carload-lot' and

assessed the maximum total cost.

Jucker and Rosenblatt showed that the behavior of
an NV facing an all-units quantity discount depends

on the cost of disposing of excess inventory which can
be: (i) zero, (ii) negative and (iii) positive (items have
no salvage value and are costly to dispose of). Also,
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Jucker and Rosenblatt identi®ed two types of supplier

behavior: (a) `cooperative' in which the supplier allows
the NV to take delivery of only Q units even if the
actual order quantity is at the breakpoint just above Q

and (b) `literal' in which the NV takes delivery of the
whole quantity ordered. Analysis of the behavior im-
plications under the all-units quantity discount resulted

in a marginal cost function that has intervals in the
discount schedule that e�ectively have zero marginal

cost. This marginal cost function is general enough to
admit the marginal cost functions of the incremental
and carload-lot schedules as special cases. The mar-

ginal cost function allowed Jucker and Rosenblatt to
develop a solution procedure simpler and more e�-
cient than traditional approaches.

Pantumsinchai and Knowles [28] proposed algor-
ithms for solving an SPP in which Q is made up of a

number of containers with standard sizes. The NV can
choose any combination of container sizes. The larger
the container the smaller the unit cost. A restricted

policy is one in which Q is ®lled by ®rst ordering as
many of the largest container as possible, then the next

largest and so on. Pantumsinchai and Knowles pro-
vided a general algorithm for solving the problem. The
algorithm was designed for an ordering cost of zero

and a modi®cation was suggested for positive ordering
cost. Since under signi®cant discounts, the restricted
policy yields optimal or near-optimal solutions,

Pantumsinchai and Knowles devised an e�cient algor-
ithm for it.

Khouja [26] considered an SPP in which an emer-
gency supply option exists. In the case of a shortage, a
proportion of customers are willing to wait for emer-

gency supply. Unit cost from the emergency supply is
R, where C< R< P+S. Khouja maximized E(p ) and
PB. For maximizing E(p ), Khouja derived the su�-

cient optimality condition for any demand distribution.
Let t be proportion of customers who are willing to

wait, for maximizing PB, Khouja identi®ed two cases:
(a) t(PÿR )>(1ÿt )S for which Q � is independent of
the demand distribution and is provided in closed

form and (b) t(PÿR ) < (1ÿt )S for which Q � is depen-
dent on the demand distribution. Khouja derived
closed-form expressions for Q � for exponential and

uniform demand distributions.
Lin and Kroll [27] considered all-units and incre-

mental quantity discounts and dual performance
measures. The dual performance measures resulted in
the objective function ``maximize the expected pro®t

subject to a constraint that the probability of achieving
a target pro®t level is no less than a predetermined

risk level'', which was proposed by Ismail and
Louderback [6]. Lin and Kroll treated two cases of
shortage costs: S= 0 and S>0 which with the two

quantity discounts resulted in four models: (a) all-unit
discount and S= 0, (b) incremental discount and

S= 0, (c) all-unit discount and S>0 and (d) incre-
mental discount and S>0. Lin and Kroll provided

simple algorithms for solving the ®rst two cases and
suggested using techniques such as a Lagrangian multi-
plier or penalty functions for the last two cases.

Kabak and Weinberg [25] proposed three extensions
to the SPP: (1) supply of inventory is a random vari-
able due to a supplier with variable capabilities, (2)

suppliers are charged a penalty for not being able to
meet contract obligations; the penalty can be ®xed or
proportional to the quantity of shortage and (3) a sec-

ondary supplier can supply additional units when the
primary supplier can't provide Q �. The secondary sup-
plier charges a higher unit price.

3.3. Extensions to di�erent news-vendor pricing policies

and discounting structures

Researchers have suggested SPP extensions in which
demand is price dependent [29±34]. Whitin [34]

assumed that the expected amount demanded is a
function of price and using incremental analysis, de-
rived the necessary optimality condition. He then pro-

vided closed-form expressions for the optimal price
(P �), which is used to ®nd Q � for a demand with a
rectangular distribution. Mills [32] also assumed

demand is a random variable with an expected value
that is decreasing in price and with constant variance.
Mills derived the necessary optimality conditions and

showed that, under reasonable assumptions, P � under
uncertainty is less than the riskless P �. He also pro-
vided further analysis for the case of demand with rec-
tangular distribution.

Lau and Lau [31] introduced a model in which the
NV has the option of decreasing P in order to increase
demand. Lau and Lau analyzed two cases for demand:

1. Case A; the demand is given by a simple homosce-
dastic regression model x=aÿbP+e, where a and b
are constants and e is normally distributed. The

above equation implies a normally distributed
demand which decreases linearly with P.

2. Case B; the demand distribution is constructed

using a combination of statistical data analysis and
experts' subjective estimates. The `method of
moments' was used to ®t the four-parameter Beta
distribution to estimate demand.

For case A, Lau and Lau showed that E(p ) is unim-
odal and thus the golden section method can be used.
For case B, there is no guarantee E(p ) is unimodal.

Thus, Lau and Lau developed a search procedure for
identifying local maximums. Lau and Lau also maxi-
mized PB and considered the two cases of S= 0 and

S>0. For S= 0 and case A, Lau and Lau derived
closed-form solutions for Q � and P �. For S= 0 and
case B, Lau and Lau developed a procedure for com-
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puting PB and used a search procedure for Q �. For
S>0 and cases A and B, PB may not be unimodal.

Lau and Lau developed procedures for computing PB

and ®nding Q �.
Polatoglu [33] also considered the simultaneous pri-

cing and procurement decisions. Polatoglu identi®ed
few special cases of the demand process addressed in
the literature: (i) an additive model in which the

demand at price P is x(P )=m(P )+e, where m(P ) is the
mean demand as a function of price and e is a random
variable with a known distribution and E[e ]=0, (ii) a

multiplicative model in which x(P )=m(P )�e where
E[e ]=1 and (iii) a riskless model in which
X(P )=m(P ). Polatoglu analyzed the SPP under general
demand uncertainty to reveal the fundamental proper-

ties of the model independent of the demand pattern.
Polatoglu assumed an initial inventory of I, m(P ) is a
monotone decreasing function of P on (0, 1) and a

®xed ordering cost of k. For linear expected demand
(m(P )=aÿb�P, where a, b>0) Polatoglu proved the
unimodality of E(p ) for uniformly distributed additive

demand and exponentially distributed multiplicative
demand.
Khouja [30] solved an SPP in which multiple dis-

counts are used to sell excess inventory. In this model,
retailers progressively increase the discount until all
excess inventory is sold. The discount prices are Pi,
i= 0, 1, � � �, n, where Pi>Pi+1. The quantity

demanded at each discount price Pi is a multiple ti of
the quantity demanded at the regular price P0. Khouja
assumed that ti, i= 1, � � �, n are known parameters

and solved the problem under two objectives: (a) maxi-
mizing E(p ) and (b) maximizing PB. Khouja showed
that E(p ) is concave and derived the su�cient optimal-

ity condition for Q. For maximizing the probability of
achieving a target pro®t of B, PB, Khouja provided a
closed-form expression for Q �. Khouja [29] solved the
multi-discount SPP when the supplier o�ers an all-

units quantity discount. Khouja developed an algor-
ithm for identifying Q � under the objective of maxi-
mizing E(p ). The algorithm may require several

evaluations of numerical integrals.

3.4. Extensions to random yields

Scholars have suggested SPP extensions in which Q
contains defective units [35±41] or the available pro-

duction capacity is a random variable [42,43]. Karlin
[38] assumed that the number of good units in a lot is
a random variable with a known probability distri-

bution. Karlin limited the ordering decisions to two
alternatives: (a) do not order and (b) order from a
choice of set levels, which does not allow for a range

of order sizes. Shih [41] assumed defective units are
unsaleable and are returned to the manufacturer at
his/her expense. He also assumed that the percentage

of defectives (r ) is a random variable with known

probability distribution. Shih derived the expected cost
function and provided proof of its convexity and de-
rived the necessary optimality condition for Q for any

distribution of x and r. Noori and Keller [39] obtained
analytical results for Q � for uniformly and exponen-
tially distributed demand. Ehrhardt and Taube [35]

generalized Shih's model by dealing with general forms
of holding and shortage cost instead of the linear case

and derived the necessary optimality conditions. For
uniformly distributed demand, Ehrhardt and Taube
provided a closed-form expression for Q �. Ehrhardt

and Taube provided a heuristic when r has a Beta dis-
tribution and demand follows a negative binomial dis-
tribution.

Gerchak et al. [36] also dealt with random yield and
assumed that there is some existing initial stock, I.

Also, Gerchak et al. allowed the cost to be pro-
portional to Q or to the net yield. Gerchak et al.
showed that E(p ) is concave in I and Q and that there

is a critical level of I above which no order will be
placed under certain yield, and this level is the same

under random yield. Gerchak et al. also showed that
unlike certain yield, the optimal policy under random
yield is not of the `order-up-to' type.

Henig and Gerchak [37] did not assume that the
yield constitutes a proper fraction of Q which makes
the model applicable to situations where the input level

and yield size are not measured in the same units. In
one part of the analysis, Henig and Gerchak did not

make any assumptions about the manner in which the
yield depends on Q. In another part, Henig and
Gerchak assumed stochastically proportional yield.

Henig and Gerchak assumed that production costs
depend on the realized yield and then generalized their
results to where the production costs depend on both

Q and the realized yield. Henig and Gerchak assumed
a beginning inventory of I and analyzed the critical

ordering point I under certain and random yield.
Henig and Gerchak showed that for a given I, if it is
not optimal to order when yield is certain, it is also

not optimal to order when yield is random.
Parlar and Wang [40] analyzed an SPP in which the

NV uses two suppliers, each having random yield.
Parlar and Wang assumed that the suppliers have
di�erent yield distributions and prices and used the

stochastically proportional yield assumption.
Diversi®cation may still be useful since it may reduce
the overall yield variability. Parlar and Wang proved

the concavity of E(p ) for a general demand distri-
bution and proposed an approximate solution tech-

nique for ®nding Qi
�, i = 1, 2.

Ciarallo et al. [42] analyzed an SPP in which the
uncertainty is a result of random capacity rather than

yield. Ciarallo et al. assumed that because down time
is uncertain, productive capacity is a random variable
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with a known distribution. Ciarallo et al. proved that
under linear shortage and holding cost, the expected

cost function is non-convex but unimodal which allows
classical convex procedures to be used for optimiz-
ation. Ciarallo et al. showed that the optimal policy in

this case is identical to the classic SPP model. Jain and
Silver [43] also assumed demand and supplier capacity
to be random variables with a known probability dis-

tributions. Jain and Silver assumed that the NV can
assure the availability of a given level of capacity by
paying the supplier a premium ahead of time. The NV

does not have the obligation of ordering the quantity
that corresponds to the full utilization of dedicated ca-
pacity. Jain and Silver assumed that the cost of reser-
ving capacity is a monotonically increasing convex

function. The NV must decide on the level of dedi-
cated capacity and on Q. Jain and Silver derived E(p )
which may have multiple local maxima as a function

of dedicated capacity. For normally distributed
demand and capacity, Jain and Silver developed a sol-
ution algorithm.

3.5. Extensions to di�erent states of information about
demand

Several authors analyzed SPPs in which the demand
does not satisfy the classical assumptions of having a

speci®c distribution with known parameters [2,44±50].
Other researchers studied the e�ects of increased varia-
bility of demand [51] or solved the SPP under simpler

demand distributions [52]. Scarf [49] assumed that only
the mean m and variance s 2 of demand are known and
derived in closed-form the Q � which maximizes E(p )
against the worst possible distribution of demand.
Gallego and Moon [2] provided a simpler proof of

Scarf's rule and derived, in closed-form, a simple lower
bound on E(p ) with respect to all possible demand dis-

tributions. Gallego and Moon also provided four
extensions to the distribution free SPP:
1. A recourse case in which there is a second purchas-

ing opportunity after observing demand. After
ordering Q and ®nding that x>Q, an additional
order for xÿQ is placed at a higher cost. Gallego

and Moon derived closed-form expressions for Q �.
2. A ®xed cost case in which a ®xed cost is charged for

placing an order and there is an initial inventory.
Gallego and Moon derived a simple ordering rule

for Q �.
3. A random yield case in which the number of good

units out of Q is a random variable G(Q ). Gallego

and Moon assumed that each unit has a r prob-
ability of being good, which implies that G(Q ) is a
binomial random variable. Gallego and Moon de-

rived a closed-form expression for Q � and a lower
bound on E(p �).

4. A multi-product case in which products compete for

a scarce resource. Gallego and Moon used a budget

constraint. This problem is sometimes referred to as

the stochastic product mix problem problem [53].

Gallego and Moon formed the Lagrangian function

and developed a solution algorithm.

Moon and Choi [46] maximized E(p ) against the

worst possible distribution of demand for a distri-

bution free SPP with balking. Moon and Choi

assumed that once the inventory level falls to a level k

or less, the probability that an arriving customer will

buy the product drops from 1 to L. Moon and Choi

developed the necessary and su�cient optimality con-

dition which requires a line search for Q �. Moon and

Choi also solved the problem in the presence of an in-

itial inventory and ordering cost and developed the

necessary and su�cient condition for the optimal

inventory level (S �).
Reyniers [48] developed a high-low search algorithm

for the SPP under uncertainty rather than risk. Actual

demand is a constant D which is unknown but has a

known lower bound DL and upper bound DU.

Ordering a quantity of Q can be interpreted as making

a guess about D. The problem becomes ®nding a

sequence of guesses such that in the most adverse

demand conditions, E(p ) is maximized. Reyniers dealt

with asymmetric information feedback where demand

is found only when supply exceeds demand. Otherwise,

only a lower bound on demand is observed. Reyniers

devised an algorithm for ®nding D at maximum pro®t

using the theory of high-low search. In the original

high-low search games, a keeper hides an integer and

the payo� is the number of guesses required by the

seeker to ®nd this integer given that the seeker is told

after each guess if it was too high, too low, or exact.

Petrovic et al. [47] developed two fuzzy models to

deal with uncertainty in the SPP. The models address

two cases: (a) imprecisely described discrete demand

but precise Co and Cu and (b) imprecise demand and

imprecisely estimated Co and Cu. In both models

demand is based on subjective judgment and can be

vaguely expressed by statement such as ``demand is

much larger than dl''. Petrovic et al. suggested that

fuzzy set theory provides the appropriate framework

to describe and treat uncertainty related to imprecision

of natural language expressions. For both cases Q �, is
determined by one dimensional search. Petrovic et al.

provided numerical examples for both cases. While

imprecise demand alone did not lead to a large change

in Q � from the classical case, the fuzziness in the over-

age and underage costs did. This conclusion may be

only valid for the numerical examples.

Gerchak and Mossman [44] analyzed the e�ects of

demand randomness on Q � and E(p ). While the litera-

ture has some ordinal results concerning the direction

of change because of randomness, the authors, provide
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cardinal results about the changes in Q �. Thus, the
authors provided statements about the magnitude of

change and not only direction. To model increases in
randomness, the authors used a mean m preserving
transformation

x a � ax� �1ÿ a�m, ar0 �6�

which is often used in microeconomics. The authors
showed that the optimal order quantity (now denoted

Qa
�) inherits the exact transformation of the random

demand

Q�a � aQ�a � �1ÿ a�m, for all ar0, �7�

which implies that the optimal order quantity is
increasing in demand variability if that quantity is
below the mean, which is rather plausible if the

demand distribution is not too positively skewed. The
authors showed that risk pooling, i.e. aggregating sev-
eral random demands into one, may not result in a re-

duction in Q � or at least move it closer to the mean
demand as intuition suggests.
Shih [50] and Hill [45] applied a Bayesian method-

ology to the SPP. The Bayesian approach deals with a

stochastic decision-making environment in which ran-
dom variables follow known distributions with
unknown but ®xed parameters. Using collateral data

and/or subjective assessment, a `prior' distribution for
the unknown parameter is constructed. As new data
becomes available, the prior distribution is updated

and a `posterior' distribution of the unknown par-
ameter is generated. This posterior distribution is then
used to obtain a new Q. Shih [50] used a Gamma prior

distribution of the unknown mean and exponentially
distributed demand. Hill [45] used a uniform prior
over some permitted parameter range and exponential,
Poisson and binomial demand distributions. Hill

showed that the application of the Bayesian method-
ology, produces better results than using a single point
estimate of the unknown parameter under exponential

distribution. Hill also showed that the same conclusion
holds over a wide range of parameter values for the
Poisson and binomial.

Ridder et al. [51] studied the e�ects of demand
variability on E(p �). Intuition suggests that higher
demand variability results in larger variances and smal-
ler E(p �). Song [54] proved this assertion for a class of

problems which included the SPP for many commonly
used demand distributions including the normal.
Ridder et al. showed that Song's conclusion is not

always true and used stochastic dominance to charac-
terize the conditions under which the opposite relation-
ship between demand variability and E(p �) is true.

Ridder et al. developed the su�cient conditions under
which higher demand variability will lead to an
increase in E(p �).

Kumaran and Achary [52] solved the SPP for a
demand with a generalized l-type distribution (GLD).

Kumaran and Achary pointed out that the main pro-
blem with some other distributions is that they require
closed-form expressions for the cumulative distribution

function (cdf), inverse cdf and the loss function. GLD
is a four-parameter family of distributions which,
among its advantages, are its ability to assume di�er-

ent shapes both symmetric and skewed and has simple
closed-form expressions for the inverse cdf and the loss
function. Using demand with GLD, Kumaran and

Achary provided closed-form expressions for Q � and
1ÿF(Q �). Based on 80 test cases, Kumaran and
Achary showed that Q � and 1ÿF(Q �) obtained under
the GLD approximation to normal, exponential and

Gamma distributed demands are quite accurate.

3.6. Extensions to constrained multi-products

Several authors developed constrained multi-product

extensions to the SPP [55±59]. Silver et al. [4] provided
detailed mathematical analysis of the constrained
multi-product SPP and a review of many extensions re-
lated to it. Some of these extensions may fall outside

the domain of this review. We focus our review on
those models that are most related to the SPP and are
not fully covered by Silver et al. Hadley and Whitin

[55] solved the multi-product SPP under a storage (or
budget) constraint. Hadley and Whitin developed two
algorithms. The ®rst is based on a search for the

Lagrangian multiplier that satis®es the necessary con-
ditions. Results of this algorithm will have to be
rounded to integers and thus are suitable when the

Qi
�'s are large. For the case when the Qi

�'s are small
and rounding may have a signi®cant impact on E(p �),
Hadley and Whitin developed a marginal analysis
approach to ®nd an integer solution. Nahmias and

Schmidt [59] provided four heuristics for solving the
single-constraint SPP under normally distributed
demand. One of the heuristics required fewer compu-

tations and provided good solutions relative to the
Lagrange method. The procedure is useful for continu-
ous Q's and is thus appropriate for moderate-to high

demand items. For a 5000-item problem, Nahmias and
Schmidt's heuristic required a computing time of 5 s
versus 2 h for the Lagrange method on a DEC 2060
system.

Lau and Lau [58] solved a multi-product multi-con-
straint SPP. Since evaluating E(p ) involves many inte-
grals which is time consuming, a direct search

procedure to numerically evaluate E(p ) is inappropri-
ate. Also, since a typical newsstand will have a large
number of products and much smaller number of con-

straints, the N-variable `primal problem' should be
converted to M-variable `dual problem'. Lau and Lau
developed a procedure based on the `active set
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methods', tested the procedure against state-of-the-art
nonlinear programming software and found that their

procedure was much faster and provided better quality
solutions.
Lau and Lau [57] showed that Hadley and Whitin's

procedure for the single-constraint SPP based on the
Lagrangian multiplier works only for a limited class of
demand distributions. Lau and Lau observed that if

the demand distribution for product i has a lower
bound greater than zero, then Fi

ÿ1(0) is indeterminate
and the solution procedure breaks down. Lau and Lau

developed a procedure for dealing with this case.
Khouja and Mehrez [56] extended the model pro-

posed by Khouja [30] to the multi-product case. Thus,
this model deals with an NV selling many products,

o�ering progressively steeper discounts and operating
under a budget constraint. Using the concavity proper-
ties of the single-item case proved by Khouja [30],

Khouja and Mehrez modi®ed Hadley and Whitin's
procedures to deal with this case. The ®rst procedure
deals with large Qi

�'s. The second procedure is a simple

modi®cation of the marginal analysis approach pro-
cedure used when the Qi

�'s are small and rounding may
have a signi®cant impact on E(p �).

3.7. Extensions to multi-product models with substitution

Several authors proposed extensions to the SPP in
which customers substitute another product from the
same NV for the product they demand in case of a

shortage [60±64] or substitute a product from the com-
petition [65,66]. Another extension dealt with economic
substitution [67].

Pentico [64] addressed what is known as the assort-
ment problem in which there are a set of sizes N={1,
2, � � �, n } of a product. Size 1 is the largest and n is the
smallest. The NV will stock only a subset of sizes

because of a storage constraint. Demand for an
unstocked size i will be satis®ed from a larger stocked
size j with a substitution cost bij. The problem is to

®nd the set of sizes to stock and the order quantities
that will minimize the total cost. Pentico assumed that
demands are independent random variables with

known distributions and that demand for any size will
be supplied from the smallest possible stocked size.
Pentico formulated and solved the problem using
dynamic programming. Silver et al. [4] provide further

references for the assortment problem.
Parlar and Goyal [63] developed a two-product SPP

in which each product can substitute for the other in

case of a shortage. Parlar and Goyal assumed that the
salvage value and the lost sales penalties are zero and
that substitution occurs according to ®xed probabil-

ities. Parlar and Goyal derived the expression for E(p )
and showed that under a certain condition, it is strictly
concave. Parlar and Goyal derived the necessary

optimality conditions and using some qualitative

analysis provided good starting values to obtain Qi
�,

i = 1, 2 using an iterative solution technique such as
the Method of Newton. Khouja et al. [62] revisited the

two-item SPP with substitutability. Khouja et al. de-
rived E(p ) for positive salvage values and penalty
shortage costs but were unable to prove concavity.

Khouja et al. developed upper and lower bounds on
the Qi

�'s and developed a Monte Carlo simulation to

identify them.
Gerchak et al. [61] extended the SPP to a case of a

product with two grades with downward demand sub-

stitution and production process having random yields.
Gerchak et al. analyzed two models. In model I, a

single production process yields a random quantity of
usable products of which the quantity of the higher
grade product constitutes a random function. In model

II, two production processes are used. The ®rst process
is similar to the process in model I. The second process
produces only lower grade products but their yield is

random. Gerchak et al. analyzed both models under
known demand. For model I, Gerchak et al. showed

that E(p ) is concave in Q and derived the su�cient
optimality condition. For model II, Gerchak et al.
showed that E(p ) is concave in Q1 (produced on the

®rst process) and Q2 (produced on the second process)
and derived the su�cient optimality conditions.
Bassok et al. [60] developed a multi-product SPP

model with substitution. Bassok et al. assumed N pro-
ducts and N demand classes with full downward sub-

stitution. Bassok et al. assumed that the substitution
cost is proportional to the quantity substituted. The
proposed problem is a two stage decision model. In

stage I, the NV decides on the Qi
�'s. In stage II, after

observing demand, the NV decides how to allocate the
Qi
�'s among the N demand classes. Bassok et al. devel-

oped a greedy algorithm to ®nd the optimal allocation
and showed that E(p ) is concave and submodular

which enabled them to prove several properties of the
optimal policy. Bassok et al. developed expressions for
the ®rst di�erentials of E(p ) which are useful in devel-

oping any gradient based algorithm. Using a 2-product
problem, Bassok et al. demonstrated that signi®cant
gains can be obtained by considering substitution.

Parlar [66] analyzed a two-NV SPP in which when
one has a shortage, a fraction of his/her customers

switches to the other NV. Thus, each NV's Q a�ects
the other NV's E(p ) and the decision of each NV can't
be treated in isolation of the other. Parlar used game

theoretic ideas to analyze the decision-making strat-
egies of the NVs. The NVs were assumed to have

knowledge of the demand densities, substitution rates,
and other parameter values. Parlar analyzed the de-
cisions under three assumptions about the behavior of

the NVs:
1. No cooperation between the NVs. If the NVs are
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rational (no NV will risk lowering his/her E(p ) for

the purpose of damaging the competitor), then the

NVs may adopt a Nash strategy.

2. One irrational NV. One NV attempts to in¯ict the

maximum damage on the other. Parlar showed that

the maximin strategy of the other NV reduces to

strategy in the classical SPP.

3. Perfect cooperation. In this case, one NV does not

incur a penalty if the other NV satis®es the former's

demand.

Lippman and McCardle [65] investigated the e�ects

of competition on inventory levels in the SPP. Their

goal was to determine whether the Qi
�'s in the multi-

®rm industry can still be characterized as fractiles of

the demand distributions as is the case in the classical

SPP. In addition, Lippman and McCardle compared

the equilibrium inventory levels and stockout probabil-

ities of the multi-®rm competitive solution and the

classical monopolist's solution. Lippman and

McCardle assumed that demand is split among several

®rms. To isolate the pure impact of competition,

Lippman and McCardle assumed that the aggregate

demand does not change with the total number of

®rms. Each ®rm's strategy is characterized by its Q.

Lippman and McCardle assumed no price competition

because each ®rm charges a preset price. The existence

of competition means that a customer who ®nds the

shelves empty at one ®rm may visit another to satisfy

his/her demand. Thus, there are two aspects of

demand: the initial allocation and the reallocation.

Initial allocation does not depend on the order quan-

tities but rather a rule known to all. The reallocation

refers to the portion of excess demand that is reallo-

cated to other ®rms. Thus, ®rm A may increase its Q

not only to capture the excess demand from ®rm B but

also to restrain ®rm B from ordering too much.

Lippman and McCardle introduced four splitting rules

for the initial allocation of demand: deterministic split-

ting, simple random splitting, incremental random

splitting, and independent random demands. For an

industry made up of two ®rms, Lippman and

McCardle showed that if all excess demand is reallo-

cated, competition never leads to a decrease in industry

inventory. Also, under deterministic splitting with each

®rm's share increasing in the total industry demand,

competition does not alter industry inventory, there is

a unique equilibrium and the inventory ordering rule is

represented as a fractile of the e�ective demand distri-

bution, which extends the results of the classical SPP.

For larger than two-®rm industry, Lippman and

McCardle showed that if demand is split according to

a randomized rule in which all ®rms are treated identi-

cally, then competition drives expected industry pro®t

to zero as the number of ®rms increases.

Deuermeyer [67] introduced the concept of economic

substitution in the SPP which means that Qi (i = 1, 2,
� � �, n ) is a non-increasing function of the on-hand

inventories of the other products. In this case, some
amount of product i can be replaced by an increase in
the amounts of other products kept on hand in terms

of the economic bene®ts realized by the NV. Thus,
economic substitution in this model does not imply
that product j can be used to satisfy demand for pro-

duct i. Deuermeyer showed that the optimal policy
uses the economic substitution property and that the
optimal inventory level (on-hand+Qi

�) is more respon-

sive to changes in newer inventory than older inven-
tory.

3.8. Extensions to multi-echelon systems

Several multi-echelon extensions to the SPP have

been suggested [68±71,53,72±75]. Gerchak and Henig
[70] formulated a single period model for selecting op-
timal component stock levels in an assemble-to-order

system. For a given component stock level, Gerchak
and Henig determined the revenue maximization allo-
cation of common components between products. This
information is in turn used to select the optimal stock

levels.
Jonsson and Silver [73] also dealt with assemble-to-

order environment where some of the components are

unique to speci®c end items while others are common
to two or more end items. Jonsson and Silver assumed
that components must be ordered before demands for

end items become known. Jonsson and Silver also
assumed that demands for end items are normally dis-
tributed and their values become known before ®nal

assembly operations begin. Jonsson and Silver
addressed the problem of deciding on component
quantities under a budget constraint so as to maximize
the expected number of units of end items sold. The

problem was addressed for two end items, each com-
posed of two components, and one of the components
is common to both end items. Jonsson and Silver

developed a simple heuristic for solving the problem.
Jonsson and Silver [74] extended their earlier model to
deal with many components and end items. Jonsson

and Silver formulated the problem as a two-stage sto-
chastic programming problem with a recourse which
turns out to be extremely di�cult to solve optimally.
Jonsson and Silver developed three heuristics for sol-

ving the problem under some simplifying assumptions.
One of the heuristics performed well for the practical
case of continuous demand distributions for end items

and large budgets. Jonsson et al. [72] used scenario
aggregation technique for solving the two-stage sto-
chastic programming problem formulated by Jonsson

and Silver. The basic idea behind scenario aggregation
technique is to consider only a relatively small subset
of the typically large number of stochastic demand
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outcomes. For each subset, the optimal values of the

decision variables can be easily found. Scenario aggre-
gation ensures that an implementable solution is then
obtained using an iterative scheme. Jonsson et al.

found that in 50% of the problems studied, scenario
aggregation identi®ed the optimal solution.

Gerchak and Zhang [71] developed a two-echelon
SPP in which decisions have to be made on whether to
hold inventories in the form of raw materials or ®n-

ished products. Holding raw material is less costly but
if demand turns out to be high then a fraction of
demand is lost since some customers might not be will-

ing to wait for the conversion of raw materials into ®n-
ished goods. Gerchak and Zhang assumed that there is

an initial inventory at both stages and derived E(p ) as
a function of the inventory levels and proved its con-
cavity. Gerchak and Zhang then derived the optimal

inventory policy. Their conclusion can be summarized
as: if both initial stocks are high nothing will be
ordered, and, depending on the proportion of ®nished

products in the total stock, some raw material might
be processed. If the stock of ®nished products is high

but the combined stock is low, only raw materials
should ordered. If both stocks are low, both items
should ordered up to constant level derived by

Gerchak and Zhang.
Eynan and Rosenblatt [69] further generalized

Gerchak and Zhang's model. Eynan and Rosenblatt
used the SPP to evaluate an assembly in advance
(AIA) versus an assemble to order (ATO) strategies in

a two-echelon production system. Productions cost for
AIA items is lower than ATO items because there is
no need to expedite and production can be executed

well. The trade-o� is between carrying more costly ®n-
ished goods inventory with the risk of having some

units undemanded or carrying components inventory
and assembling it to order at a higher production cost.
The decision variables are the amounts of inventory to

hold at the raw material stage Qr and the ®nished
goods stage Qs. Eynan and Rosenblatt showed that

E(p ) is concave and derived the necessary optimality
conditions for Qr and Qs. Eynan and Rosenblatt pro-
vided conditions under which each strategy is optimal.

They then solved the problem when the assembly time
is not negligible resulting in some lost sales when ®n-
ished goods inventory is exhausted because some cus-

tomers will not wait. In addition, they solved the
problem under three types of budgetary constraints.

Moon and Choi [75] extended Eynan and Rosenblatt's
model to the distribution free case where only the
mean and standard deviation of the demands are

known. Moon and Choi assumed that there is no in-
itial inventories and all customers will wait for the con-
version process and derived closed form expressions

for Qr
� and Qs

�. Moon and Choi also treated the pro-
blem under a budget constraint using the Lagrange

method. Other references to models related to this area
of the SPP can be found in Silver et al. [4].

3.9. Extensions to multi-location models

Multi-location SPP extensions can be divided into
two types: (1) all locations have the same selling season

[76±80] and (2) the selling seasons of the di�erent lo-
cations lag each other [81].
Eppen [79] analyzed the e�ects of centralization on

the multi-location SPP. In this model, there are N
retail centers which raises the opportunity for centrali-
zation. Eppen compared the expected cost of two con-
®gurations: (a) a decentralized system in which a

separate inventory is kept at each center and (b) a cen-
tralized system in which inventory is kept at central
warehouse. Eppen assumed normal demand distri-

bution and linear holding and penalty costs and
showed that the expected cost of the decentralized fa-
cilities exceeds that of the centralized facility with the

di�erence depending on the correlation of demands.
For uncorrelated and identically distributed demands,
the expected cost of the centralized facility increases as
the square root of the number of consolidated centers.

Stulman [80] analyzed Eppen's model [79] with Poisson
demand distributions and replaced the penalty short-
age cost with a service level constraint on meeting

demand at each location. Using a ®rst come ®rst
served rule, Stulman found the optimal starting inven-
tory for the centralized and decentralized facilities.

Stulman showed that when each location's demand
can be approximated by a normal distribution and
under some conditions, the centralized system requires

less starting inventory than the decentralized system
and is less costly. Chen and Lin [77] showed that
Eppen's conclusion holds for any probability distri-
bution and concave holding and penalty cost func-

tions. Chen and Lin [78] provided a counter example
to the conclusion of Stulman [80]. Chen and Lin
showed that under Stulman's assumptions, a centra-

lized two-location system with a maximum acceptable
probability of stockout of 86% at each location has a
higher starting inventory than a decentralized system.

Chang and Lin [76] noted that previous work did not
take into account the transportation cost when a cen-
tralized facility is used and reworked the model with
the addition of transportation cost.

Kouvelis and Gutierrez [81] observed that an NV
can exploit the di�erence in timing of selling seasons
of geographically dispersed markets. For example, a

US garment maker can sell his/her remaining summer
fashion in Australia where summer is about to begin.
Kouvelis and Gutierrez considered a secondary market

whose selling season follows the season of the primary
market. Kouvelis and Gutierrez studied coordination
among markets under exchange rate uncertainty. A
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centralized policy is one in which a corporate planner
decides on how much to produce at each market and

how much excess inventory to ship from the primary
to the secondary market. A decentralized control pol-
icy is one in which each market is treated as a pro®t

center and the only coordination mechanism is a con-
stant transfer price (CT) at which the secondary market
can buy items from the primary one. Kouvelis and

Gutierrez showed that a centralized policy is more
pro®table for any CT and that the di�erence in E(p )
can be signi®cant. However, Kouvelis and Gutierrez

observed that decentralization is preferable from a
managerial point of view for accountability. Kouvelis
and Gutierrez proposed a third policy in which de-
cisions are still decentralized but the transfer between

markets is handled by a third corporate unit. The unit
buys goods from the primary market using a nonlinear
pricing scheme developed by Kouvelis and Gutierrez

and sells them to the secondary market at the salvage
value of the primary market. Kouvelis and Gutierrez
showed that this policy is equally pro®tably as the cen-

tralized policy.

3.10. Extensions to models with more than one period to

prepare for the selling season

The idea behind these models is that there may be

many periods to produce or purchase the items which
will be sold in a single season. The question becomes
how should the NV plan production for items pro-

duced in-house or what orders should be placed with
the suppliers as the selling season draws closer. Silver
et al. [4] provided a good review and an extensive list

of references for this extension of the SPP. To avoid
duplication, we focus our attention on a subset of
representative models [82±86]. Murray and Silver [86]
assumed there are m opportunities to purchase the

item at pre-speci®ed points in time (T1, T2, � � �, Tm )
and that the cost depends on the purchase time. The
item is displayed in competition with others of its type

sold by other NVs. Murray and Silver assumed that
the total number of customers demanding an item of
this type between Ti and Ti+1, is known. However, the

chance that a customer will buy the NV's product,
denoted p, is unknown and is ®xed for the season. As
the season progresses the NV's knowledge about the
value of p improves. Thus, the sales potential of the

product is treated as a subjective random variable
whose distribution is changed adaptively using Bayes's
rule as the sales history unfolds. Murray and Silver

used the two-parameter Beta distribution to represent
the prior distribution. The problem becomes ®nding
Qi's at T1, T2, � � �, Tm which will maximize E(p ).
Murray and Silver formulated the problem as a
dynamic program and provided computational short-
cuts for certain types of the problem.

Hausman and Peterson [83] extended Murray and

Silver's model to the case of multiple products and
limited production capacity in each period. Hausman
and Peterson assumed that ratios of successive fore-

casts of total orders for a seasonal product are
mutually independent Lognormal variates whose par-
ameters can be estimated by analysis of historical fore-

cast data. Hausman and Peterson formulated both the
single and multi-product cases as dynamic program-

ming problems and developed and compared three
heuristics to solve the multi-product production plan-
ning problem.

Bitran et al. [82] dealt with a system that produces
several families of style goods. A family is de®ned as a

set of items consuming the same amount of resources
and sharing the same setup. Bitran et al. assumed that
the setup cost associated with changeover from one

family to the next is large enough that managers
attempt to produce each family once in the planning
horizon. Also, Bitran et al. assumed that the mean

demand for each family is invariant over the horizon
whereas item demands are forecasted in each period.

Demand occurs in the last season of the horizon and
demand estimates for items are revised every period.
The problem is ®nding item production quantities

which will maximize E(p ). Bitran et al. assumed the
demand of items in a family follow a joint normal dis-
tribution and that each period has limited production

capacity. The problem was formulated as a di�cult
stochastic mixed integer programming problem and by

exploiting its hierarchical structure (families and then
items), Bitran et al. formulated and solved a determi-
nistic mixed integer programming problem which pro-

vided an approximate solution.
Matsuo [85] observed that a limitation of Bitran et

al.'s model is that it included discrete production

periods and each family is assigned to exactly one
period which works well only if the number of families

is much larger than the number of periods. Also, the
complexity of Bitran et al.'s method made sensitivity
analysis di�cult. To avoid the limitations of Bitran et

al.'s model, Matsuo used a continuous treatment of
time and formulated the problem as a two-stage sto-
chastic sequencing model. In stage I, a sequence of

production quantities of families is determined at the
beginning of planning horizon. In stage II, the pro-

duction quantities of items in each family are deter-
mined using the revised demand forecast. Matsuo
developed and tested a heuristic procedure for solving

the problem.
Kodama [84] analyzed an SPP in which partial

returns up to a level R are allowed in case of a surplus
and additional purchases up to a level A are allowed
in case of a shortage. Kodama assumed that surplus

inventory can carry over to the next period and de-
rived the optimality condition. Kodama noted that the
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SPP is a special case of the model when surplus inven-
tory can't be carried over.

3.11. Other extensions

Other extensions have been proposed to the SPP.
Pfeifer [87] introduced an extension to yield manage-

ment. Airlines often o�er discount-fare tickets which
must be purchased before a certain time from ¯ight
departure and the rest of the tickets are sold at full-

fare prices. Yield management is the process by which
the discount fares are allocated to scheduled ¯ights for
the purposes of increasing revenues. Let RD be the dis-
count fare, RF be the full fare, q be the number of

seats to be made available at RD and Q be the total
number of seats available. The problem is to ®nd q
which maximizes E(p ). Pfeifer analyzed two strategies:

(a) a permanent allocation in which q is determined
once and remains unchanged and (b) a continuous
review in which the question changes from what

should q be to when to stop sales at RD and begin at
RF. Let P1 be the probability that the (q+ 1)st poten-
tial customer will purchase a seat at RD but will be
lost if RD is no longer available and P2 be the prob-

ability that the remaining Qÿq ÿ 1 seats will satisfy all
subsequent customers willing to pay RF. Obviously P1
and P2 are a function of q and will have to be esti-

mated. Pfeifer used marginal analysis to provide the
optimality condition for q. Pfeifer also showed that the
SPP can be used to solve the problem. The key is not

to think in terms of q but rather in terms of Qÿq, the
number of seats to reserve for sale at RF. With Qÿq
seats held, the question is how many will not be sold

which is the classical SPP. The demand distribution
becomes the conditional distribution of subsequent
full-fare demand, given that q discount-fare seats have
been sold.

Weatherford and Pfeifer [3] used the SPP to evaluate
the economic value of advanced booking of orders
(ABO) which is the practice of selling some units of a

good or service in advance of their actual availability.
Discount airline tickets and season tickets in advance
of athletic games are examples of ABO. ABO have

two bene®ts: (a) providing early information about
demand and (b) capturing customers who will buy
only if the discount is o�ered. For normally distributed
demand, Weatherford and Pfeifer quanti®ed the ben-

e®ts of ABO which include: (a) bene®ts from improved
yield management, (b) bene®ts from improved fore-
casting which leads to improved Q � and (c) bene®ts

that accrue because management has the option of
stopping the venture if the ABO shows disappointing
results.

Lau [88] observed that even though there is a simple
rule to compute Q � in the SPP, there are no formulas
for computing E(p ). He derived simple formulas for

computing E(p ) for uniformly and exponentially dis-
tributed demands and identi®ed a near closed-form

equation which was originally considered by Hadley
and Whitin [55] for the normal distribution.
Ward et al. [89] pointed out the impracticality of

theoretical approaches to the SPP. The applied
approach may compromise theoretical completeness
and assumptions' validity in favor of transparency and

simplicity. Ward et al. pointed out that specifying the
demand distribution is di�cult and suggested working
with an approximate discrete distribution. Also, Ward

et al. pointed out that because model parameters are
usually rough estimates, sensitivity analysis is needed.
Ward et al. illustrated an applied approach to the SPP
based on partial enumeration of E(p ) under a discrete

demand distribution. The use of the discrete distri-
bution is advocated because it is easier to specify and
it can be subjectively adjusted to account for the cases

when demand exceeded Q. Marginal analysis was used
to determine Q �.
Gerchak and Wang [90] solved an SPP in which

demand depends randomly on the starting inventory
level (I ) which is the sum of the initial inventory (I0)
and the order quantity Q. Gerchak and Wang assumed

that demand is given by x=H(I )�W, where H(I ) is an
increasing concave function of I, and W is a nonnega-
tive random variable with a known probability distri-
bution. Gerchak and Wang proved that E(p ) is

concave in Q and derived the optimal policy in terms
of whether to order in terms of I0 and how much.
Some related models to the SPP are those in which

the goal is to ®nd when to discount in the SPP.
Recently, Feng and Gallego [91] developed a model in
which the capacity decisions for the period are ®xed.

Thus, revenue maximization becomes the objective.
Feng and Gallego assumed that demand is price-sensi-
tive and the NV knows the expected demand rate at
certain prescribed prices. Feng and Gallego's goal was

to determine the optimal time and direction of the
price change.

4. Discussion

While many extensions of the SPP have been pro-
posed, very little comparative work has been done. As
described in Section 3.1, the SPP has been solved

under many objectives. However, little work has been
performed on comparing the results obtained under
these di�ering objectives. For example, under what

conditions in terms of demand distribution and pro-
blem parameters do the objectives of maximizing E(p )
and PB lead to similar or di�erent Q �. Additionally,

while many objectives have been suggested, little atten-
tion has been given to their validity and suitability
under di�erent environments.
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Extensions to di�erent supplier and NV pricing pol-

icies are similar to extensions of the classical economic
order quantity (EOQ) model proposed in the literature.
The models extending the SPP to price-dependent

demand make some assumptions which may be proble-
matic from a practical point of view. The assumption
that the NV will select a single price and quantity

which maximizes expected pro®t may lead to an unrea-
listic problem formulation. The assumption is that the

NV o�ers the product for a price of P � and if not all
of Q � is demanded at P �, the NV discounts the
remaining units to a salvage value V. This policy is in-

ferior to one in which the NV uses more than one dis-
count, say for example, prices of P �, 0.8P �, 0.6P � and
then V (assuming 0.6P �>V ) are used. This type of
pricing policy was proposed by Khouja [29,30] but the
author ignored price±demand relationships and

assumed that a given demand multiplier can be sold at
each discount price. A more realistic formulation is
one in which the NV uses multiple prices and the

quantity demanded at each price is based on some
price±demand relationship. Another factor that should

be taken into account is the ®xed cost of discounting.
In general, ®rms may incur some ®xed cost for dis-
counting their products which is especially true for

retailers. The ®xed discounting cost for retailers results
from the need to advertise the discount and mark
down the items discounted.

Extensions dealing with random yields also mirror
those proposed for the EOQ and other deterministic

inventory models. Many of the SPP extensions in this
area are similar. However, there are some important
extensions which have been proposed for the EOQ but

not for the SPP. Among the most important of these
extensions are ones in which product quality deterio-

rates with increased order quantity, Q [92]. Using the
EOQ framework, Porteus [92] assumed the production
process to be perfectly functioning at the start of pro-

duction of a lot. With the production of each unit the
process may shift toward `out-of-control'. In other
words, the process follows a two-state Markov chain

during the production of a lot, with transition occur-
ring with each unit produced. This assumption leads to

the proportion of defectives being increasing in Q. The
impact of this observation may signi®cantly reduce Q �

in the SPP as is the case with the EOQ model.

While the models dealing with the SPP under substi-
tution and di�erent states of information about

demand are discussed in di�erent sections, there is an
important relationship between them. Substitutability
may be used to manage products with high demand

variability and large overage cost. The idea is that
when demand can be shifted from a product with high
demand variability and large overage cost to a product

with small overage cost, the total expected pro®t may
be increased. Also, the models on substitutability

would bene®t from an empirical evaluation of the true
patterns of substitution used by consumers. Most

models assume downward substitution; however, the
validity of this assumption cannot be asserted. Some
of the literature on substitutability in economics may

be useful in identifying realistic substitution patterns.
Another issue raised by substitution is the di�culty it
poses in terms of estimating demand for di�erent pro-

ducts that are substitutes. If the NV o�ers a number
of products that are substitutes, then how can one
di�erentiate between the demand for a certain product

as being a true demand for it or demand for another
product for which there is a shortage? The models pro-
vide no means for handling this di�culty created by
substitutability.

Extensions to multi-echelon systems do not seem to
®t well within the classical assumptions of the SPP
model. Many of these models deal with an assembly

type operations. The type of products that are
assembled, except for very high tech products, are not
the type of products which are thought of in dealing

with the SPP. Actually, some of these extensions were
solved as a ®rst step approximation to multi-period
models.

A number of papers on the SPP have been motiv-
ated by the desire to develop practical models
[15,19,20,89]. Thakkar et al. [20] thought that return
on investment (ROI) is a better criteria than E(p ) and
PB. Later, Magee [19] and then Anvari [15] suggested
that the capital-asset pricing model (CAPM) is the
appropriate framework for the SPP. Ward et al. [89]

suggested that working with an approximate discrete
distribution and performing sensitivity analysis are
needed to have a practical model. Without some

empirical work examining real life objectives of man-
agers and the availability of information about
demand, the practicality of these models cannot be
assessed.

5. Conclusion and suggestions for future research

Interest in the SPP has increased over the past 40

years. This interest can be attributed in part to the
increased dominance of service industries for which the
SPP is very applicable in both retailing and pure ser-
vice organizations such as air transportation. Also, the

reduction in product life cycles brought about by tech-
nological advances makes the SPP more relevant.
Further areas of SPP research include a joint deter-

mination of the optimal order quantity and the dis-
counting policy which involves deciding on the number
of discounts to o�er and their magnitude. Substitution

is another area of research. While most models assume
downward substitution, the multi-product SPP under
general substitution has not yet been addressed.
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Another extension is the incorporation of the e�ects of
advertising in the SPP. While researchers assumed that

the quantity demanded is a function of price, this
assumption did not take into account the ability of the
NV to in¯uence the quantity demanded through adver-

tising. Other extensions may combine two or more of
the extensions discussed in this paper to further gener-
alize the SPP. The complexity of the problem will

increase and heuristics procedures may have to be used
to ®nd good solutions.
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